Wellbore instability issues represent the most critical problems in Iraq Southern fields. These problems, such as hole collapse, tight hole and stuck pipe result in tremendous increasing in the nonproductive time (NPT) and well costs. The present study introduced a calibrated three-dimensional mechanical earth model (3DMEM) for the X-field in the South of Iraq. This post-drill model can be used to conduct a comprehensive geomechanical analysis of the trouble zones from Sadi Formation to Zubair Reservoir. A one-dimensional mechanical earth model (1DMEM) was constructed using Well logs, mechanical core tests, pressure measurements, drilling reports, and mud logs. Mohr–Coulomb and Mogi–Coulomb failure criteria determined the possibility of wellbore deformation. Then, the 1DMEMs were interpolated to construct a three-dimensional mechanical earth model (3DMEM). 3DMEM indicated relative heterogeneity in rock properties and field stresses between the southern and northern of the studied field. The shale intervals revealed prone to failure more than others, with a relatively high Poisson's ratio, low Young's modulus, low friction angle, and low rock strength. The best orientation for directional Wells is 140° clockwise from the North. Vertical and slightly inclined Wells (less than 40°) are more stable than the high angle directional Wells. This integration between 1 and 3DMEM enables anticipating the subsurface conditions for the proactive design and drilling of new Wells. However, the geomechanics investigations still have uncertainty due to unavailability of enough calibrating data, especially which related with maximum horizontal stresses magnitudes.