The Greater Burgan field has been on production for over 75 years mainly from the homogenous massive sands of the Burgan clastic sequence. Given the increasing field water cut from these sands, it is now a matter of strategic focus for the asset to target the generally untapped thin, laminated low quality sands to sustain target production. This paper focuses on a case study for a horizontal well design and completion optimization using sector modeling.
An updated dynamic model, covering the area of interest, was developed. This is an extremely important tool to achieve the study objectives. A sector model was cut out from the full field dynamic model. Grid refinement was performed on the sector, in both vertical and horizontal dimensions. Newly drilled wells were used to update the model horizons, petrophysical data from offset wells in the sector, including geosteering data from the pilot hole, were upscaled and properties populated across the model.
The dynamic model calibration was conducted successfully by including all available well events, workovers, production data, static and flowing bottom hole and well head pressures including all other surveillance data from offset wells. To better match the historical field pressure and water-production, sensitivities were conducted to determine the model response to various parameters including the aquifer strength and faults conductivity. Adjustment of the aquifer strength enhanced the field pressure match, invariably improving the calibration of the model.
After model calibration, the horizontal well was implemented in the model, in line with the design scope from the asset. The biggest uncertainty was the oil-water contact (OWC) in the sector near the planned well. Although offset wells gave a reasonable estimate of the OWC, it was used as sensitivity parameter to cover the uncertainty. This was taken forward into the model prediction simulation work. The modeling study provided immense insights into the probable outcomes in terms of actual horizontal well production deliverability. Multiple rate sensitivities were conducted mimicking the different choke sizes which were planned. These were used as a guide for the asset to set reasonable production target rates for the well.
The study also provided a technical justification for completion recommendations and optimization with a view to maximizing the well's production over time. The horizontal well has been drilled, completed, and tested in the field. The production test rates were encouragingly consistent with the model predictions. The workflow methodologies adopted in this work have now been extended to other wells being drilled in the field.