Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Micronutrient malnutrition is one of the major causes of human disorders in the developing world. Iron (Fe) is an important micronutrient due to its use in human metabolism such as immune system and energy production. Estimates indicate that above 30% of the global population is at risk of Fe deficiency, posing a particular threat to infants and pregnant women. Plants have adapted various strategies for uptake, transport, accumulation, and storage of Fe in tissues and organs which later can be consumed by humans. Biofortification refers to increase in micronutrient concentration in edible parts of plants and understanding the pathways for Fe accumulation in plants. Conventional plant breeding, transgenics, agronomic interventions, and microbe‐mediated biofortification are all potential methods to address Fe deficiency. This review article critically evaluates key aspects pertaining to Fe biofortification in cereal crops. It encompasses an in‐depth analysis of the holistic presence of Fe, its significance in both human and plant contexts, and the diverse strategies employed in Fe uptake, transport, accumulation, and storage in plant parts destined for human consumption. Additionally, the article explores the bioavailability of Fe and investigates strategies for biofortification, with a specific emphasis on both traditional methods and recent breakthroughs aimed at enhancing the Fe content in food crops. Keeping in view the significance of Fe for human life, appropriate biofortification strategies may serve better to eliminate hidden hunger rather than its artificial supplementation.
Micronutrient malnutrition is one of the major causes of human disorders in the developing world. Iron (Fe) is an important micronutrient due to its use in human metabolism such as immune system and energy production. Estimates indicate that above 30% of the global population is at risk of Fe deficiency, posing a particular threat to infants and pregnant women. Plants have adapted various strategies for uptake, transport, accumulation, and storage of Fe in tissues and organs which later can be consumed by humans. Biofortification refers to increase in micronutrient concentration in edible parts of plants and understanding the pathways for Fe accumulation in plants. Conventional plant breeding, transgenics, agronomic interventions, and microbe‐mediated biofortification are all potential methods to address Fe deficiency. This review article critically evaluates key aspects pertaining to Fe biofortification in cereal crops. It encompasses an in‐depth analysis of the holistic presence of Fe, its significance in both human and plant contexts, and the diverse strategies employed in Fe uptake, transport, accumulation, and storage in plant parts destined for human consumption. Additionally, the article explores the bioavailability of Fe and investigates strategies for biofortification, with a specific emphasis on both traditional methods and recent breakthroughs aimed at enhancing the Fe content in food crops. Keeping in view the significance of Fe for human life, appropriate biofortification strategies may serve better to eliminate hidden hunger rather than its artificial supplementation.
Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.
Abiotic factors, such as drought, can significantly impact the vegetative growth and productivity of maize. To investigate the effects of the combined foliar application of zinc (Zn) and iron (Fe) nanoparticles with the recommended nitrogen dose (RND) on maize production and grain chemical composition under different water regimes, two field experiments were conducted in El-Ayyat city, Giza, Egypt, during the summer seasons of 2022 and 2023. This study utilized a split-split-plot experimental design with three replications. The main plots were designated to different water regimes (100, 80, 60, and 40% of estimated evapotranspiration), while the sub-plots were randomly distributed with Zn and Fe nanoparticle concentrations (0, 100, and 200 mg/L). The sub-sub-plots were randomly allocated to three maize cultivars (SC-P3062, SC-32D99, and SC-P3433). The results revealed that exposure to drought conditions resulted in a significant decline in the yield and yield-related attributes across all maize cultivars examined. Grain yield decreased by 10–50% under drought conditions. However, the foliar application of Zn and Fe nanoparticles was found to significantly improve grain yield, protein content, oil content, starch content, crude fiber, ash, and macro- and micronutrient concentrations in the maize cultivars under control and drought stress conditions. The foliar application of Zn and Fe nanoparticles at a concentration of 200 mg/L to the SC-P3433 maize cultivar led to the greatest grain yield per hectare, reaching 11,749 and 11,657 kg under the irrigation regimes with 100 and 80% total evapotranspiration, respectively. According to the assessment using the relative drought index, the SC-P3062 maize cultivar demonstrated tolerance (T) to water stress conditions. In conclusion, the foliar application of Zn and Fe nanoparticles (100–200 mg/L) effectively mitigated the negative effects of drought stress on maize plants. This approach can be recommended for farmers in arid and semi-arid regions to maintain and improve maize yield and grain quality under water-deficit conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.