The objective of this study is to investigate the variation of neutral axis of ship hull girder due to asymmetric geometry or asymmetric load, and its influence on the ultimate strength (ULS) of hull girder. In order to account for asymmetric geometries and loads of hull girders, the force equilibrium and force-vector equilibrium criteria together with a minimum convergence factors (error) method are employed to determine the translation and rotation of neutral axis plane (NAP) of symmetric or asymmetric hull cross section in the application of Smith's method at each step of curvature of the hull girder. The ULSs of Dow's 1/3 frigate model with three predefined structural integrity states, one intact and two damaged, respectively, is investigated by the improved Smith's method (ISM) for a range of variation of heeling angles. The influence of asymmetric geometry and load on the motion of NAP and on the ULS are analyzed and discussed. The results show that the improved iteration strategy together with the minimum convergence factors (error) method is efficient and more accurate in searching the translation and rotation of NAP. Finally, the envelope curves of the bending moments in the three predefined integrity states are obtained, which can be used for assessing ULS of hull girders under combined vertical and horizontal wave bending moments.