Gold nanoparticles (AuNPs) have been widely used in catalytic electrochemistry. Heterogeneity in size, shape, and surface sites leads to variable, particle-specific catalytic activities. Conventional electrochemical methods can only obtain the collective responses from all the catalytic nanoparticles on the electrode surface; the heterogeneity of particle performance will be averaged. Alternatively, plasmonic electrochemical imaging (PECi) is capable of imaging the electrochemical activity at individual nanoparticles. In this work, PECi was used to image the oxidation and reduction of the gold surface at individual AuNPs, and their associated structural alterations were successfully measured. We have studied the electrochemical responses from gold nanocubes, gold nanorods, and gold nanowires with PECi and observed different surface redox activities. We have also demonstrated the capability of monitoring the surface dynamics at individual AuNPs utilizing characteristic PECi derived cyclic voltammograms (CVs).