Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Several processing methods are under study for deposition of different layers of YBa 2 Cu 3 O 7−x -(YBCO-) coated conductors. The effect of these processing techniques on residual stress evolution in thin films of yttria-stabilized zirconia (YSZ) and YBCO was evaluated by measurement of the residual stresses using x-ray diffraction (XRD). The YSZ films (textured and nontextured) were deposited on Hastelloy C substrates by ion-beam-assisted deposition (IBAD), and the YBCO films were deposited on lanthanum aluminate (LaAlO 3 ) substrates by pulsed laser deposition (PLD) and sol-gel techniques. The measured residual stresses in the YSZ films (both textured and nontextured) were more compressive than the calculated thermal mismatch stress between Hastelloy C and YSZ, apparently due to intrinsic compressive stresses induced in the YSZ films during IBAD processing. In addition, a lower compressive residual stress was measured in the textured YSZ film compared to the nontextured film because of a reduction in the intrinsic compressive stress in the textured film. PLD processing of YBCO films on LaAlO 3 substrate resulted in a lower tensile residual stress (in the YBCO film) than the calculated thermal mismatch stress between YBCO and LaAlO 3 . This difference is attributed to the generation of intrinsic compressive stresses in the YBCO film during PLD, in a manner similar to IBAD. In comparison to IBAD and PLD, sol-gel processing apparently generated negligible intrinsic stresses, resulting in a good agreement between the measured residual stress in the YBCO film and the calculated thermal mismatch stress between YBCO and LaAlO 3 .
Several processing methods are under study for deposition of different layers of YBa 2 Cu 3 O 7−x -(YBCO-) coated conductors. The effect of these processing techniques on residual stress evolution in thin films of yttria-stabilized zirconia (YSZ) and YBCO was evaluated by measurement of the residual stresses using x-ray diffraction (XRD). The YSZ films (textured and nontextured) were deposited on Hastelloy C substrates by ion-beam-assisted deposition (IBAD), and the YBCO films were deposited on lanthanum aluminate (LaAlO 3 ) substrates by pulsed laser deposition (PLD) and sol-gel techniques. The measured residual stresses in the YSZ films (both textured and nontextured) were more compressive than the calculated thermal mismatch stress between Hastelloy C and YSZ, apparently due to intrinsic compressive stresses induced in the YSZ films during IBAD processing. In addition, a lower compressive residual stress was measured in the textured YSZ film compared to the nontextured film because of a reduction in the intrinsic compressive stress in the textured film. PLD processing of YBCO films on LaAlO 3 substrate resulted in a lower tensile residual stress (in the YBCO film) than the calculated thermal mismatch stress between YBCO and LaAlO 3 . This difference is attributed to the generation of intrinsic compressive stresses in the YBCO film during PLD, in a manner similar to IBAD. In comparison to IBAD and PLD, sol-gel processing apparently generated negligible intrinsic stresses, resulting in a good agreement between the measured residual stress in the YBCO film and the calculated thermal mismatch stress between YBCO and LaAlO 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.