Background: Dual-energy (DE) imaging techniques in cone-beam computed tomography (CBCT) have potential clinical applications, including material quantification and improved tissue visualization. However, the performance of DE CBCT is limited by the effects of scattered radiation, which restricts its use to small object imaging.Purpose: This study investigates the feasibility of DE CBCT material decomposition by reducing scatter with a 2D anti-scatter grid and a measurement-based scatter correction method. Specifically, the investigation focuses on iodine quantification accuracy and virtual monoenergetic (VME) imaging in phantoms that mimic head, thorax, abdomen, and pelvis anatomies.