2020
DOI: 10.1112/jlms.12325
|View full text |Cite
|
Sign up to set email alerts
|

Residue fixed point index and wildly ramified power series

Abstract: In this paper, we study power series having a fixed point of multiplier 1. First, we give a closed formula for the residue fixed point index, in terms of the first coefficients of the power series. Then, we use this formula to study wildly ramified power series in positive characteristic. Among power series having a multiple fixed point of small multiplicity, we characterize those having the smallest possible lower ramification numbers in terms of the residue fixed point index. Furthermore, we show that these … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 22 publications
0
0
0
Order By: Relevance