Effective management and conservation of migratory bird populations require knowledge and incorporation of their movement patterns and space use throughout the annual cycle. To investigate the little‐known migratory patterns of two grassland bird species, we deployed 180 light‐level geolocators on Grasshopper Sparrows (Ammodramus savannarum) and 29 Argos‐GPS tags on Eastern Meadowlarks (Sturnella magna) at Konza Prairie, Kansas, USA, and six US Department of Defense (DoD) installations distributed across the species' breeding ranges. We analyzed location data from 34 light‐level geolocators and five Argos‐GPS tags attached for 1 year to Grasshopper Sparrows and Eastern Meadowlarks, respectively. Grasshopper Sparrows were present on the breeding grounds from mid‐April through early October, substantially longer than previously estimated, and migrated on average ~2,500 km over ~30 days. Grasshopper Sparrows exhibited strong migratory connectivity only at a continental scale. The North American Great Lakes region likely serves as a migratory divide for Midwest and East Coast Grasshopper Sparrows; Midwest populations (Kansas, Wisconsin, and North Dakota; n = 13) largely wintered in Texas or Mexico, whereas East Coast populations (Maryland and Massachusetts, n = 20) wintered in the northern Caribbean or Florida. Our data from Eastern Meadowlarks provided evidence for a diversity of stationary and short‐ and long‐distance migration strategies. By providing the most extensive examination of the nonbreeding movement ecology for these two North American grassland bird species to date, we refine information gaps and provide key insight for their management and conservation.