The oil pipeline network system (OPNS) is an essential part of the critical infrastructure networks (CINs), and is vulnerable to earthquakes. Assessing and enhancing the resilience of the OPNS can improve its capability to cope with earthquakes or to recover the system’s performance quickly after the disturbance. This study defines the concept of OPNS resilience in the resistive ability, the adaptive ability, and the recovery ability. Then, the quantitative resilience assessment model is established considering the earthquake intensities, the role of safety barriers, the time-variant reliability, and the importance coefficient of each subsystem via a Monte Carlo simulation. Combining the model with GIS technology, a new methodology to evaluate OPNS resilience is proposed, and the resilience partition technology platform is developed, which can visualize the results of the resilience assessment. Finally, a case study is implemented to demonstrate the developed methodology, and a discussion is provided to identify the sensitive variables. The proposed resilience methodology can provide a framework for the probabilistic resilience assessment of OPNS, and could be expanded to other lifeline network systems.