Today the majority of people uses online social networks not only to stay in contact with friends, but also to find information about relevant topics, or to spread information. While a lot of research has been conducted into opinion formation, only little is known about which factors influence whether a user of online social networks disseminates information or not. To answer this question, we created an agent-based model and simulated message spreading in social networks using a latent-process model. In our model, we varied four different content types, six different network types, and we varied between a model that includes a personality model for its agents and one that did not. We found that the network type has only a weak influence on the distribution of content, whereas the message type has a clear influence on how many users receive a message. Using a personality model helped achieved more realistic outcomes.