Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This article is a literature review aimed at presenting the general state of knowledge in manufacturing engineering and materials engineering to develop engineering materials applied for endodontic treatment as filling materials. Particular attention was paid to theoretical analyses concerning the selection of methods for developing and obturating root canals and discussing the results of experimental studies available in the literature. These activities aimed to compare the importance of the most commonly used endodontic filling materials based on gutta-percha or polymeric polyester materials, commonly known as resilon, respectively. The motivation to take up this complex, multi-faceted topic in this paper is the extent of caries, periodontal disease, and other oral diseases in 3 to 5 billion people, often affecting toothlessness and contributing to an increase in the index of disability-adjusted life years (number). Endodontics is an important element of the authors’ concept of Dentistry Sustainable Development (DSD) > 2020. The principles of qualifying patients for endodontic treatment are discussed. The introduction of rotary tools, especially manufactured from Nitinol alloy, to develop root canals and the latest thermohydraulic and condensation techniques for obturation guarantee progress in endodontics. The “Digital Twins” methodology was used, rooted in the idea of Industry 4.0 and the resulting idea of Dentistry 4.0, as well as knowledge management methods, to perform experimental research in virtual space, concerning methods of developing and obturating the root canal and assessing the tightness of fillings. Microscopic visualization methods were also used. Significant factors determining the effectiveness of endodontic obturation are the selection of the filling material and the appropriate obturation method. The generalized dendrological matrix of endodontic filling materials considers the criteria of mechanical strength influencing the potential root fracture and the quality of root canal filling. The results of the SWOT point analysis (strengths and weaknesses, opportunities, threats) were also compared. For both filling materials, the weaknesses are much less than the strengths, while the threats are slightly less than the opportunities for the gutta-percha-based material, while for resilon the opportunities are much smaller than the threats. It requires the application of an appropriate development strategy, i.e., MAXI-MAXI in the case of a filling material based on gutta-percha and MAXI-MINI in the case of resilon. Therefore, the analysis of these experimental data does not indicate the real competitiveness of resilon for the gutta-percha-based material. This material deservedly maintains its strong position as the “Gold Standard of Endodontics”.
This article is a literature review aimed at presenting the general state of knowledge in manufacturing engineering and materials engineering to develop engineering materials applied for endodontic treatment as filling materials. Particular attention was paid to theoretical analyses concerning the selection of methods for developing and obturating root canals and discussing the results of experimental studies available in the literature. These activities aimed to compare the importance of the most commonly used endodontic filling materials based on gutta-percha or polymeric polyester materials, commonly known as resilon, respectively. The motivation to take up this complex, multi-faceted topic in this paper is the extent of caries, periodontal disease, and other oral diseases in 3 to 5 billion people, often affecting toothlessness and contributing to an increase in the index of disability-adjusted life years (number). Endodontics is an important element of the authors’ concept of Dentistry Sustainable Development (DSD) > 2020. The principles of qualifying patients for endodontic treatment are discussed. The introduction of rotary tools, especially manufactured from Nitinol alloy, to develop root canals and the latest thermohydraulic and condensation techniques for obturation guarantee progress in endodontics. The “Digital Twins” methodology was used, rooted in the idea of Industry 4.0 and the resulting idea of Dentistry 4.0, as well as knowledge management methods, to perform experimental research in virtual space, concerning methods of developing and obturating the root canal and assessing the tightness of fillings. Microscopic visualization methods were also used. Significant factors determining the effectiveness of endodontic obturation are the selection of the filling material and the appropriate obturation method. The generalized dendrological matrix of endodontic filling materials considers the criteria of mechanical strength influencing the potential root fracture and the quality of root canal filling. The results of the SWOT point analysis (strengths and weaknesses, opportunities, threats) were also compared. For both filling materials, the weaknesses are much less than the strengths, while the threats are slightly less than the opportunities for the gutta-percha-based material, while for resilon the opportunities are much smaller than the threats. It requires the application of an appropriate development strategy, i.e., MAXI-MAXI in the case of a filling material based on gutta-percha and MAXI-MINI in the case of resilon. Therefore, the analysis of these experimental data does not indicate the real competitiveness of resilon for the gutta-percha-based material. This material deservedly maintains its strong position as the “Gold Standard of Endodontics”.
This paper is a literature review with additional virtual analyses of the authors’ own experimental research results. Knowledge from various areas was synergistically combined, appropriately for concurrent engineering, presenting several possible methodological approaches used in research, optimizing the selection of engineering materials and the conditions of their application with particular application in endodontics. Particular attention was paid to the theoretical aspects of filling material strengths, weaknesses, opportunities, and threats SWOT analysis. Attention was paid to the original concepts of Sustainable Dentistry Development in conjunction with Dentistry 4.0, which includes endodontics as an important element. The dentists’ actions, among others, in conservative dentistry, along with endodontics, requires close cooperation with engineers and the enginering sciences. Methods of root canal preparation were described, together with selected tools, including those made of nitinol. Principles concerning the process of cleaning and shaping the pulp complex are presented. The importance of obturation methods, including the Thermo-Hydraulic-Condensation THC technique, and the selection of filling materials with the necessary sealants for the success of endodontic treatment are discussed. The experimental studies were carried out in vitro on human teeth removed for medical reasons, except for caries, for which two groups of 16 teeth were separated. After the root canal was prepared, it was filled with studs and pellets of a filling material based on polyester materials, which has gained the common trade name of resilon or, less frequently, RealSeal (SybronEndo) with an epiphany sealant. The teeth for the first group were obturated by cold lateral condensation. In the second case the obturation was performed using the Thermo-Hydraulic-Condensation technique using System B and Obtura III. The experimental leakage testing was done using a scanning electron microscope SEM and a light stereoscopic microscope LSM, as typical research tools used in materialography. The research results, in a confrontation with the data taken from the literature studies, do not indicate the domination of resilon in endodontics.
The importance of endodontics is presented within our own concept of Dentistry Sustainable Development (DSD) consisting of three inseparable elements; i.e., Advanced Interventionist Dentistry 4.0 (AID 4.0), Global Dental Prevention (GDP), and the Dentistry Safety System (DSS) as a polemic, with the hypothesis of the need to abandon interventionist dentistry in favour of the domination of dental prevention. In view of the numerous systemic complications of caries that affect 3−5 billion people globally, endodontic treatment effectively counteracts them. Regardless of this, the prevention of oral diseases should be developed very widely, and in many countries dental care should reach the poorest sections of society. The materials and methods of clinical management in endodontic procedures are characterized. The progress in the field of filling materials and techniques for the development and obturation of root canals is presented. The endodontics market is forecast to reach USD 2.1 billion in 2026, with a CAGR of 4.1%. The most widely used and recognized material for filling root canals is gutta-percha, recognized as the “gold standard”. An alternative is a synthetic thermoplastic filler material based on polyester materials, known mainly under the trade name Resilon. There are still sceptical opinions about the need to replace gutta-percha with this synthetic material, and many dentists still believe that this material cannot compete with gutta-percha. The results of studies carried out so far do not allow for the formulation of a substantively and ethically unambiguous view that gutta-percha should be replaced with another material. There is still insufficient clinical evidence to formulate firm opinions in this regard. In essence, materials and technologies used in endodontics do not differ from other groups of materials, which justifies using material engineering methodology for their research. Therefore, a detailed methodological approach is presented to objectify the assessment of endodontic treatment. Theoretical analysis was carried out using the methods of procedural benchmarking and comparative analysis with the use of contextual matrices to virtually optimize the selection of materials, techniques for the development and obturation of root canals, and methods for assessing the effectiveness of filling, which methods are usually used, e.g., in management science, and especially in foresight research as part of knowledge management. The results of these analyses are presented in the form of appropriate context matrices. The full usefulness of the research on the effectiveness and tightness of root canal filling using scanning electron microscopy is indicated. The analysis results are a practical application of the so-called “digital twins” approach concerning the virtual comparative analysis of biomaterials used in endodontic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.