Background: Integrons have a well-established role in the dissemination of resistance among Gram-negative pathogens and are thus a useful marker of antibiotic resistance. Shigellae are noteworthy for their multiple drug resistance, having gradually acquired resistance to most widely use and inexpensive antimicrobial drugs. Methodology: A total of 32 Shigella strains belonging to serotypes flexneri, dysenteriae, and boydii 20, a new Shigella serovar, resistant to at least four antibiotics were analyzed by molecular techniques. Results: Class 1 integrons were the most prevalent (92.8%); class 2 integrons were found in 16 strains (57.1%). Fifty percent of the strains harboured both class 1 and 2 integrons (intI1 and intI2 genes); this combination of integrase genes was most prevalent in S. boydii 20 and S. dysenteriae strains. The class 1 integrons detected contained dfr and aadA cassettes, alone or in combination (dfrA5/dfrA15, or dfrA15-aadA1, dfrA1-aadA2), and an atypical cassette array with an insertion sequence (oxa30-aadA1-IS1). For class 2 integrons, we detected either the same cassettes as those found in Tn7 (dfrA1-sat1-aadA1-orfX) or truncated class 2 integrons without aadA1 or orfX. The tns genes were absent from all class 2 integrons. The distribution of integrons among RAPD profiles and serotypes revealed a clonal spread of integrons into serotypes and a transfer of integrons between different serotypes. Conclusions: The detection of integrons in a new Shigella serovar, in addition with a high integron prevalence among Shigella strains, confirms the propensity of shigellae to acquire and disseminate resistance determinants.