Helicobacter pylori is a human-pathogenic bacterial species that is subdivided geographically, with different genotypes predominating in different parts of the world. Here we test and extend an earlier conclusion that metronidazole (Mtz) resistance is due to mutation in rdxA (HP0954), which encodes a nitroreductase that converts Mtz from prodrug to bactericidal agent. We found that (i) rdxA genes PCR amplified from 50 representative Mtz r strains from previously unstudied populations in Asia, South Africa, Europe, and the Americas could, in each case, transform Mtz s H. pylori to Mtz r ; (ii) Mtz r mutant derivatives of a cultured Mtz s strain resulted from mutation in rdxA; and (iii) transformation of Mtz s strains with rdxA-null alleles usually resulted in moderate level Mtz resistance (16 g/ml). However, resistance to higher Mtz levels was common among clinical isolates, a result that implicates at least one additional gene. Expression in Escherichia coli of frxA (HP0642; flavin oxidoreductase), an rdxA paralog, made this normally resistant species Mtz s , and frxA inactivation enhanced Mtz resistance in rdxA-deficient cells but had little effect on the Mtz susceptibility of rdxA ؉ cells. Strains carrying frxA-null and rdxA-null alleles could mutate to even higher resistance, a result implicating one or more additional genes in residual Mtz susceptibility and hyperresistance. We conclude that most Mtz resistance in H. pylori depends on rdxA inactivation, that mutations in frxA can enhance resistance, and that genes that confer Mtz resistance without rdxA inactivation are rare or nonexistent in H. pylori populations.Helicobacter pylori is a gram-negative microaerophilic bacterium that chronically infects human gastric epithelial cell surfaces and the overlying gastric mucin, a niche that few if any other microbes can occupy. It is carried by more than half of all people worldwide and is an important human pathogen: a major cause of peptic ulcer disease, and a contributor to other illnesses, ranging from childhood malnutrition to gastric cancer, and to increased susceptibility to other food-and waterborne pathogens (7,8,32,38,47). There is great intrinsic and public health interest in fully elucidating H. pylori's metabolic pathways and how H. pylori maintains its redox balance during microaerobic growth. Such knowledge should help us to understand the extraordinary chronicity of H. pylori infection and factors that determine whether a given infection will be benign or virulent, elucidate mechanisms of drug susceptibility and resistance, and identify potential targets for new effective antimicrobial agents.Here we focus on mechanisms of susceptibility and resistance of H. pylori to metronidazole (Mtz), a synthetic nitroimidazole that is a key component of popular and affordable anti-H. pylori therapies worldwide and that is also widely used against various anaerobic and parasitic infections (13,36,45). Resistance to Mtz is common among H. pylori strains, with frequencies among clinical isolates ranging from 10 ...