Cultivated soils, when submitted to agricultural practices, tend to compact due to the pressure exerted by agricultural machines and implements, a process that compromises soil quality and system sustainability. Specific properties of each soil, such as particle size and organic matter content, interfere with the process and degree of compaction and, consequently, plant growth. This study aimed to analyze the effect of different degrees of compaction (DC) on soil physical properties and black oat (Avena strigosa Schreb) growth. For this purpose, four soils were collected: Latossolo Vermelho distrófico retrático (Ferralsol LV CN), Cambissolo Húmico alumínico típico (Cambisol CH LG), Nitossolo Bruno distrófico típico (Nitisol NB PA), and Nitossolo Bruno distrófico húmico (Nitisol NB SJ). They were submitted to five degrees of compaction (bulk densities corresponding to 80, 85, 90, 95, and 100 % DC), defined by their relation to the maximum density obtained by the Normal Proctor Test. For each DC, porosity, soil water retention curve, penetration resistance, hydraulic conductivity, and aeration capacity were determined. In a greenhouse, the oats were cultivated in the four soils with five different degrees of compaction. The experiment was carried out in a completely randomized design, factorial scheme, and five replications. Crop measurements included the growth rate, shoot dry matter, and forage quality analysis. Soil compaction changed the physical properties of soils. In all tested soils, macroporosity and total porosity decreased, more intensely at LV CN. It had macroporosity below the critical level (0.10 m 3 m-3) from DC 85. Hydraulic conductivity also decreased in all soils, which is evidence of significant environmental degradation from DC 90 onwards. Microporosity increased in the four soils due to compaction effect, and it is one of the reasons why permanent wilting point has increased. It resulted in a problem at NB SJ , mainly because it reduced the available water volume at DC 90, 95, and 100. Penetration resistance has also increased from DC 80 to 100 at all soils, exceeding the limit of 2 MPa in DC 80 for NB SJ , DC 85 for NB PA and LV CN , and DC 95 for CH LG , representing a risk to root development. Regarding black oat crop, there was a reduction in shoot dry matter only in Cambisol and in the higher DC, fiber content keeps within a satisfactory amount, without affecting forage quality in all soils and DC, thus showing that black oat is tolerant to compaction.