Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In hot accretion flows, such as the accretion flow in the Galactic center (Sgr A*) and in M 87, the collisional mean free path of the charged particles is significantly larger than the typical length-scale of the accretion flows. Under these conditions, the pressure perpendicular to the magnetic field and that parallel to the magnetic field are not the same; therefore, the pressure is anisotropic to magnetic field lines. On the other hand, the resistivity as a dissipative mechanism plays a key role in the structure and the heating of hot accretion flows. In the present paper, we study the dynamics of resistive hot accretion flows with anisotropic pressure when the magnetic fields have even z-symmetry about the midplane. By presenting a set of self-similar solutions, we find that if the magnetic fields have even z-symmetry or the viscosity form depends on the strength of magnetic field, the disc properties can be entirely different. In the presence of symmetric fields, the velocity components and the disc temperature increase considerably. Also, we show that the increase in infall velocity and temperature due to the anisotropic pressure can be more significant if the resistivity is taken into account. Our results indicate that the resistivity can be an effective mechanism for the heating of hot accretion flows in the high-limit of the magnetic diffusivity parameter. Moreover, the heating due to the anisotropic pressure is comparable to the resistive heating, only when the strength of anisotropic pressure is about unity. The increase of disc temperature can lead to the acceleration of the electrons in such flows. This helps us to explain the origin of phenomena such as the flares in Sgr A*. Our results predict that the presence of resistivity makes it easier for outflows to launch from hot accretion flows.
In hot accretion flows, such as the accretion flow in the Galactic center (Sgr A*) and in M 87, the collisional mean free path of the charged particles is significantly larger than the typical length-scale of the accretion flows. Under these conditions, the pressure perpendicular to the magnetic field and that parallel to the magnetic field are not the same; therefore, the pressure is anisotropic to magnetic field lines. On the other hand, the resistivity as a dissipative mechanism plays a key role in the structure and the heating of hot accretion flows. In the present paper, we study the dynamics of resistive hot accretion flows with anisotropic pressure when the magnetic fields have even z-symmetry about the midplane. By presenting a set of self-similar solutions, we find that if the magnetic fields have even z-symmetry or the viscosity form depends on the strength of magnetic field, the disc properties can be entirely different. In the presence of symmetric fields, the velocity components and the disc temperature increase considerably. Also, we show that the increase in infall velocity and temperature due to the anisotropic pressure can be more significant if the resistivity is taken into account. Our results indicate that the resistivity can be an effective mechanism for the heating of hot accretion flows in the high-limit of the magnetic diffusivity parameter. Moreover, the heating due to the anisotropic pressure is comparable to the resistive heating, only when the strength of anisotropic pressure is about unity. The increase of disc temperature can lead to the acceleration of the electrons in such flows. This helps us to explain the origin of phenomena such as the flares in Sgr A*. Our results predict that the presence of resistivity makes it easier for outflows to launch from hot accretion flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.