High-performance selector devices are essential for emerging nonvolatile memories to implement high-density memory storage and large-scale neuromorphic computing. Device uniformity is one of the key challenges which limit the practical applications of threshold switching selectors. Here, high-uniformity threshold switching HfO 2-based selectors are fabricated by using e-beam lithography to pattern controllable Ag nanodots (NDs) with high order and uniform size in the cross-point region. The selectors exhibit excellent bidirectional threshold switching performance, including low leakage current (<1 pA), high on/off ratio (>10 8), high endurance (>10 8 cycles), and fast switching speed (≈75 ns). The patterned Ag NDs in the selector help control the number of Ag atoms diffusing into HfO 2 and confine the positions to form reproducible filaments. According to the statistical analysis, the Ag NDs selectors show much smaller cycle-to-cycle and device-to-device variations (C V < 10%) compared to control samples with nonpatterned Ag thin film. Furthermore, when integrating the Ag NDs selector with resistive switching memory in one-selector-one-resistor (1S1R) structure, the reduced selector variation helps significantly reduce the bit error rate in 1S1R crossbar array. The high-uniformity Ag NDs selectors offer great potential in the fabrication of large-scale 1S1R crossbar arrays for future memory and neuromorphic computing applications.