ResNetMF: Enhancing Recommendation Systems with Residual Network Matrix Factorization
Mustafa Payandenick,
Yin Chai Wang
Abstract:In this paper, we introduce ResNetMF, a groundbreaking approach that harnesses the power of residual network matrix factorization to revolutionize recommendation systems. ResNetMF integrates residual networks, renowned for their ability to capture intricate patterns and features, with matrix factorization techniques that excel in modelling user-item interactions. This fusion presents a novel solution that surpasses the limitations of traditional recommendation systems. Through comprehensive experimentation and… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.