For a three-dimensional wide-angle synthetic aperture radar (SAR) with non-uniform sampling, it is necessary to divide its large aperture into several small sub-apertures before imaging due to the anisotropic characteristics of the target. The existing sub-aperture partitioning methods divide the aperture with equal intervals. However, for the non-uniformly sampled SAR, those equal-interval partitioning methods may have a bad effect on the resolution of the SAR imaging result. In view of this, a sub-aperture partitioning method for three-dimensional wide-angle SAR imaging with non-uniform sampling was proposed in this paper. First, we analyzed the relationship between the three-dimensional resolution and the sampling distribution in K-space based on the Cramer–Rao lower bound. Subsequently, according to the distribution of K-space sampling, the optimum size of each sub-aperture was found and the aperture was divided non-uniformly. Furthermore, the proposed method was validated by electromagnetic simulation data. The proposed sub-aperture partitioning method ensured that the resolution of each sub-aperture was high and consistent. By comparing with the equal-interval partitioning method, the experimental results showed that our proposed method had a higher resolution imaging result.