2023
DOI: 10.1017/flo.2023.8
|View full text |Cite
|
Sign up to set email alerts
|

Resolvent analysis of a finite wing in transonic flow

Abstract: Shock waves interacting with turbulent boundary layers on wings can result first in self-sustained flow unsteadiness and eventually in structural vibration. Due to its importance to modern wing design and aircraft certification, the transonic flow physics continue to be investigated intensively. Herein we focus the discussion on three main aspects. First, we assess a practical implementation of an iterative resolvent algorithm in the linear harmonic incarnation of an industrial computational fluid dynamics cod… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 54 publications
0
1
0
Order By: Relevance
“…the global flow field is most receptive to such imposed perturbations. Related to this is resolvent analysis to identify the maximum response to harmonic forcing, optimised over all possible forcings (Houtman, Timme & Sharma 2022, 2023.…”
Section: Global Stability Analysismentioning
confidence: 99%
“…the global flow field is most receptive to such imposed perturbations. Related to this is resolvent analysis to identify the maximum response to harmonic forcing, optimised over all possible forcings (Houtman, Timme & Sharma 2022, 2023.…”
Section: Global Stability Analysismentioning
confidence: 99%