Chemical design and physical control of the molecular aggregation of organic semiconductors have been demonstrated to be efficient strategies to prepare high performance organic solar cells (OSCs). Starting from the non-fullerene acceptor (NFA) BTP-4Cl-C9-12, two NFAs named BTP-4Cl-C9-16 and BTP-4Cl-C9-20 with the alkyl chains of 2-ethylhexyl and 2octyldodecyl attached on the pyrrole rings are synthesized in this work. Through molecular dynamics simulations and experimental characterizations, we show that favorable three-dimensional (3D) honeycomb networks, which are beneficial for charge transport, can be formed in NFAs with the moderate alkyl chain length (BTP-4Cl-C9-12 and BTP-4Cl-C9-16), while two-dimensional honeycomb networks form in BTP-4Cl-C9-20 with long alkyl chains. 1,8-Diiodooctane solvent molecules adsorb on all alkyl chains of NFAs, reducing the adsorption energy between NFAs to promote their intermolecular interactions, especially in NFAs with longer alkyl chains. As a result, the synergistic effect of the 3D network and the appropriate domain size leads to a promising power conversion efficiency of 18.0% and 15.9% in thin-(100 nm) and thick-(300 nm) PM6:BTP-4Cl-C9-16 binary OSCs. This work presents a comprehensive understanding of the interaction between the NFA and solvent additive and provides rational guidance for the molecular design and morphology regulation of NFA-based OSCs toward higher performance.