2022
DOI: 10.1007/s00009-022-02096-1
|View full text |Cite
|
Sign up to set email alerts
|

Resolving sets tolerant to failures in three-dimensional grids

Abstract: An ordered set S of vertices of a graph G is a resolving set for G if every vertex is uniquely determined by its vector of distances to the vertices in S. The metric dimension of G is the minimum cardinality of a resolving set. In this paper we study resolving sets tolerant to several failures in three-dimensional grids. Concretely, we seek for minimum cardinality sets that are resolving after removing any k vertices from the set. This is equivalent to finding $$(k+1)$$ (… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 25 publications
0
0
0
Order By: Relevance