“…Another limiting factor on the road to improving the resolution of superresolution microscopies is the size of the fluorophore proper. Last-generation nanoscopies like 2-D MINFLUX ( Balzarotti et al, 2017 ; Eilers et al, 2018 ; Masullo et al, 2021 ), cryogenic nanoscopy ( Furubayashi et al, 2019 ; Furubayashi et al, 2020 ), iterative modulation-enhanced SMLM ( Kalisvaart et al, 2022 ), improved structured-illumination microscopies ( Chen et al, 2018 ; Markwirth et al, 2019 ; Zhanghao et al, 2019 ; Mangeat et al, 2021 ; Qiao et al, 2021 ; Smith et al, 2021 ; Chen et al, 2022 ; Hunter et al, 2022 ; Zhan et al, 2022 ), new high-resolution DNA-PAINT modalities ( Schnitzbauer et al, 2017 ), 3-D MINFLUX ( Gwosch et al, 2020 ; Grabner et al, 2022 ; Gwosch et al, 2022 ) or MINSTED ( Weber et al, 2021 ) are now facing the need to introduce smaller probes to resolve structures at the molecular scale. Successful examples are provided by the recent work in which pyrrolysyl-tRNA synthetase and orthogonal tRNA were matched to introduce clickable amino acids into bacterial and mammalian cell proteins, accomplishing 3-D imaging of β-actin in filopodia with a precision of ∼2 nm ( Mihaila et al, 2022 ).…”