Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
An operator and a service company parternered in successfully drilling the longest extended-reach drilling (ERD) wells in the Sultanate of Oman. The project consisted of four wells to be drilled in the G field. These wells will be the first aquifer pumpoff wells drilled in the field with a goal of lowering the reservoir water cut (oil/water contact) for all nearby oil producers, and to minimize water production and maximize oil production. The buildup section required drilling through the risky gas cap and zones having possible total fluid losses. The risk of stuck pipe and the likelihood of gas kick, as well drilling through fractures on the horizontal section and experiencing potential total fluid losses, made successfully drilling the wells to TD even more difficult and challenging. The buildup section was divided into two string designs based on a previously used single-string design. The drilling objectives were to reduce and separate the risks in the different sections and to drill the gas cap formation in the 12.25-in. shale section, plus landing the well with possible fluid losses while entering the reservoir with the 8.5-in. bottomhole assembly (BHA). This drilling plan eliminated known risks, using BHAs for drilling the 12.25-in. section with a push-the-bit system, and drilling the 8.5-in. section with a high-buildup rate rotary steerable system (RSS) for dogleg severity assurance. Drilling both sections was performed with a near-bit gamma ray adapter for geostopping. The 6-in. lateral section was the main challenge in the drilling operations due to the anticipated highly fractured reservoir with possible total fluid losses and high-equivalent circulating density management. Poor borehole cleaning was expected due to the high-critical transport rate, as well severe shock and vibrations. The BHA was designed to be able to drill to TD using the following techniques: A finite element analysis (FEA) model was developed to determine the most excellent drillpipe to be used in terms of shock and vibration and buckling moments. The model recommended 4-in. drillpipe to reduce the high-surface pressure expected at TD.The FEA model helped in selecting the best driving system (motorized BHA) because the simulations indicated that the BHA would have lower shock and vibration and be able to handle the expected high-surface torque. Due to the expected faults and possible sidetrack, the final BHA selection was a motorized high-buildup rate RSS.The real-time parameter management and plan helped in selecting the best drilling parameters to minimize real-time shocks and vibrations. Drilling the buildup section with the two-casing string design solved the risk reduction and allowed for landing the four wells successfully. For the lateral section, the BHA design met the expectation of completing the drilling operation on one run to TD. Both companies teamed to successfully drill the two longest ERD wells in the Sultanate of Oman. All of the wells are in the very extended-reach group by ERD definition. Well G-55 is the longest ERD ratio well drilled to date by the operator with a 4.01 ratio.
An operator and a service company parternered in successfully drilling the longest extended-reach drilling (ERD) wells in the Sultanate of Oman. The project consisted of four wells to be drilled in the G field. These wells will be the first aquifer pumpoff wells drilled in the field with a goal of lowering the reservoir water cut (oil/water contact) for all nearby oil producers, and to minimize water production and maximize oil production. The buildup section required drilling through the risky gas cap and zones having possible total fluid losses. The risk of stuck pipe and the likelihood of gas kick, as well drilling through fractures on the horizontal section and experiencing potential total fluid losses, made successfully drilling the wells to TD even more difficult and challenging. The buildup section was divided into two string designs based on a previously used single-string design. The drilling objectives were to reduce and separate the risks in the different sections and to drill the gas cap formation in the 12.25-in. shale section, plus landing the well with possible fluid losses while entering the reservoir with the 8.5-in. bottomhole assembly (BHA). This drilling plan eliminated known risks, using BHAs for drilling the 12.25-in. section with a push-the-bit system, and drilling the 8.5-in. section with a high-buildup rate rotary steerable system (RSS) for dogleg severity assurance. Drilling both sections was performed with a near-bit gamma ray adapter for geostopping. The 6-in. lateral section was the main challenge in the drilling operations due to the anticipated highly fractured reservoir with possible total fluid losses and high-equivalent circulating density management. Poor borehole cleaning was expected due to the high-critical transport rate, as well severe shock and vibrations. The BHA was designed to be able to drill to TD using the following techniques: A finite element analysis (FEA) model was developed to determine the most excellent drillpipe to be used in terms of shock and vibration and buckling moments. The model recommended 4-in. drillpipe to reduce the high-surface pressure expected at TD.The FEA model helped in selecting the best driving system (motorized BHA) because the simulations indicated that the BHA would have lower shock and vibration and be able to handle the expected high-surface torque. Due to the expected faults and possible sidetrack, the final BHA selection was a motorized high-buildup rate RSS.The real-time parameter management and plan helped in selecting the best drilling parameters to minimize real-time shocks and vibrations. Drilling the buildup section with the two-casing string design solved the risk reduction and allowed for landing the four wells successfully. For the lateral section, the BHA design met the expectation of completing the drilling operation on one run to TD. Both companies teamed to successfully drill the two longest ERD wells in the Sultanate of Oman. All of the wells are in the very extended-reach group by ERD definition. Well G-55 is the longest ERD ratio well drilled to date by the operator with a 4.01 ratio.
Drilling horizontal wells with a high dogleg severity (DLS) of 10–16 deg/30 m is the approach that one operator in Oman adopted to drill the buildup section. The 8½-in section used to be drilled with a conventional motor BHA, which took around 4 days to complete. Due to the high DLS, it was required to slide at least 80% of the time. This led to a slow drilling rate, hole cleaning issues, and difficulties running the 7-in liner afterward. For a step change to happen, a full directional drilling system had to be reengineered with an extensive study of the BHA and well design. The objective was to reduce the total drilling time in the 8½-in BUS, improve the borehole quality, and reduce flat time. Traditional rotary steerable systems (RSS) are limited with their steering capabilities. A hybrid, high-build-rate RSS with push- and point-the-bit features offers the capabilities of achieving a DLS of up to 17 deg/30 m as it is independent of outside formation. Implementing the new approach eliminated the long sliding intervals and poor borehole cleaning caused by limited surface rotation with the motor BHA. The system was modeled using finite element drilling dynamics simulation software, with multiple bits and drillstring configurations to optimize the directional results. In addition, compressive study of the mud properties enabled drilling the section safely throughout Nahr Umar shale. Later, the same system was coupled with a high-torque motor, and the results showed an even better performance, which the operator plans to consider in the future to enhance the drilling rate. The use of a hybrid RSS system with a specific bit built for the application has proven its success as an integrated engineered drilling solution. It reduced the 8½-in section drilling time by 50% with improved borehole quality and delivered an overall ROP that is approximately three times what a motor BHA would have delivered. The improvement is a result of the use of PDC over TCI bits and the elimination of slide drilling. In addition, full rotation and elimination of micro-DLS resulted in smoother liner running operation. While drilling, the 100% rotational steering improved the overall hole cleaning, and the modified mud properties and additives helped eliminate the wiper trips performed previously prior to reaching the reservoir section. The success of this integrated system led the operator to replace all the motors in the entire field. This paper emphasizes the impact of new technology together with effective well engineering in drilling efficiency. With current industry focus on cost control, high-DLS RSS technology introduces new savings when used in the right application. This particular case is very common across the industry and proves the many advantages of integrated engineering projects.
In a heterogeneous and fractured carbonate hard rock with UCS more than 15K psi, drilling a highly deviated well is a challenging process that would require real time monitoring, using best in class MWD and LWD technology. A client in South Oman is in a development phase of drilling 1000m lateral wells to maximize the exposure for optimum oil production. The carbonate formation is characterized as heterogeneous vuggy dolomites with a network of regional fractures acting as the secondary source of porosity. The thin reservoir is isolated by thick layer or Anhydrites above and Shale formation below & managing geological uncertainties in real time is going to be the differentiator between success and failure. A combination of hybrid RSS to manage aggressive steering requirements along with distance to boundary imaging LWD tool to identify the bed boundaries & keep the well on course along with an azimuthal resistivity ultra-high imaging for reservoir characterization were deployed to overcome these challenges. The proposed solution was put into challenge on well X for drilling 5.87in lateral section and 1000 m lateral was successfully drilled. Hybrid RSS with aggressive bend setting helped in geo-steering the well and managed to achieve directional objectives to chase the geological uncertainties. After confirming the formation dip the well was steered 6to 7ft from the bottom conductive layer with the help of distance to boundary resistivity imaging tool. Real-Time High-Definitionazimuthalresistivity images helped in petrophysical interpretation and formation evaluation. Later, better density memory imaging data helped in evaluation of full borehole structural features and detailed fracture characterization. Hybrid rotary steerable systems along with best in class LWD tools provide purpose to fit solution to drill and geo-steered well in the optimum place. Success of this combination has eliminated the risk of exiting the reservoir leading to costly sidetrack scenario. At the same time, it has also helped the client to optimize production by geo-steering the well in the high porosity sweet spot and by Identifying regional fractures. Developing deep, hard and heterogeneous carbonate reservoirs is a complex and challenging affair and a conventional approach to overcome these challenges is not always producing the best results. A novel approach with the help of advanced rotary steerable and logging while drilling tools helped client in developing the field by minimizing the risks and maximizing the best reservoir exposure characterized, as the well are drilled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.