Abstract:The last decade has witnessed immense advances in our understanding of the effects of ionizing radiation on biological systems. As the genetic information carrier in biological systems, DNA is the most important species which is prone to damage by high energy photons. Ionizing radiations destroy DNA indirectly by forming low energy electrons (LEEs) as secondary products of the interaction between ionizing radiation and water. An understanding of the mechanism that leads to the formation of single and double strand breaks may be important in guiding the further development of anticancer radiation therapy. In this article we demonstrate the likely involvement of stable nucleobases anions in the formation of DNA strand breaks -a concept which the radiation research community has not focused on so far. In Section 21.1 we discuss the current status of studies related to the interaction between DNA and LEEs. The next section is devoted to the description of proton transfer induced by electron attachment to the complexes between nucleobases and various proton donorsa process leading to the strong stabilization of nucleobases anions. Then, we review our results concerning the anionic binary complexes of nucleobases with particular emphasize on the GC and AT systems. Next, the possible consequences of interactions between DNA and proteins in the context of electron attachment are briefly discussed. Further, we focus on existing proposal of single strand break formation in DNA. Ultimately, open questions as well perspectives of studies on electron induced DNA damage are discussed