2016
DOI: 10.12989/csm.2016.5.1.087
|View full text |Cite
|
Sign up to set email alerts
|

Resonance of a rectangular plate influenced by sequential moving masses

Abstract: In this work, an improved semi-analytical technique is adopted to track the dynamic response of thin rectangular plates excited by sequential traveling masses. This technique exploits a so-called indirect definition of inertial interaction between the moving masses and the plate and leads to a reduction, in the equations of motion, of the number of time-varying coefficients linked to the changing position of the masses. By employing this optimized method, the resonance of the plate can be obtained according to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
5
0

Year Published

2017
2017
2023
2023

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 13 publications
(5 citation statements)
references
References 24 publications
0
5
0
Order By: Relevance
“…More recently some authors have investigated the resonance phenomena caused by the circulation of periodic forces or masses following either a semi-analytical [21,22] or a numerical approach [23,24,7]. Neverthe-less, in the authors' opinion, regardless of the approach adopted, resonance phenomena caused by a series of periodic loads and the conditions for its maximization or cancellation depending on the free vibration amplitudes left by each single load have not been analysed in the case of orthotropic plates, especially when these separate from ideal well-known conditions i.e.…”
Section: Introductionmentioning
confidence: 99%
“…More recently some authors have investigated the resonance phenomena caused by the circulation of periodic forces or masses following either a semi-analytical [21,22] or a numerical approach [23,24,7]. Neverthe-less, in the authors' opinion, regardless of the approach adopted, resonance phenomena caused by a series of periodic loads and the conditions for its maximization or cancellation depending on the free vibration amplitudes left by each single load have not been analysed in the case of orthotropic plates, especially when these separate from ideal well-known conditions i.e.…”
Section: Introductionmentioning
confidence: 99%
“…Ghazvini et al [22] studied the dynamic vibration of thin un-uniform profile rectangular plates under the force of a moving mass. Hassanabadi et al [23] investigated the resonance of thin rectangular plates subjected to a train of moving mass. Rofooei et al [24] collated the Von Karman and Kirchhoff plate theory to explore the deflection of rectangular plates subjected to a moving mass.…”
Section: Introductionmentioning
confidence: 99%
“…Over the past two decades, the dynamic behaviour of cracked and non-cracked beams subjected to moving loads (mass or oscillator) has been widely investigated using different analytical and numerical approaches (e.g. Nikkhoo et al (2007), Nikkhoo (2014), Ahmadi and Nikkhoo (2014), Nikkhoo et al (2015), Hassanabadi et al (2016), He and Zhu (2016), Attar et al (2017) and Khiem and Hang (2018)). As an example, the dynamic response of cracked beams has been investigated via a transfer matrix method, where the cracked beam is modelled as several beam elements connected to each other by massless rotational springs (Attar, 2012; Moezi et al, 2015; Roveri and Carcaterra, 2012).…”
Section: Introductionmentioning
confidence: 99%