The conservation of magnetization, or atomic spin angular momentum, is broken for anisotropic dipolar interactions. As a result, the Einstein-de Haas effect, or the transfer of spin to spatial angular momentum, arises because the total angular momentum is conserved. We identify the regime for observing this with two 87Rb atoms in a single well, stimulated by the recent result for a condensate. The two-atom system is found to be more easily observed and confirmed with the addition of a periodically modulated magnetic field. Our result of utilizing a feeble dipolar interaction may find potential applications in precision measurements.