A flexible transceiver array, capable of multiple-purpose imaging applications in vivo at ultrahigh magnetic fields was designed, implemented and tested on a 7 T MR scanner. By alternately placing coil elements with primary and secondary harmonics, improved decoupling among coil elements was accomplished without requiring decoupling circuitry between resonant elements, which is commonly required in high frequency transceiver arrays in order to achieve sufficient element-isolation during RF excitation. This flexible array design is capable of maintaining the required decoupling among resonant elements in different array size and geometry, and is scalable in coil size and number of resonant elements (i.e. number of channels), yielding improved filling factors for various body parts with different geometry and size. To investigate design feasibility, flexibility, and array performance, a multi-channel, 16-element transceiver array was designed and constructed, and in vivo images of the human head, knee, and hand were acquired using a whole-body 7T MR system. 7T parallel imaging with GRAPPA performed using this flexible transceiver array was also presented.