Freak waves are characterized by extreme wave height, irregular wave shape, high peak energy, short duration, and formidable destructive potential, posing a significant threat to offshore structures. Therefore, analyzing dynamic responses exhibited by advanced offshore platforms such as the offshore triceratops under the influence of freak waves holds paramount importance. However, the response analysis of offshore triceratops under freak waves has not been explored so far in the literature. Hence, the present study aims to investigate the dynamics of offshore triceratops intended for ultradeep waters under the impact of freak waves. Initially, the dual superposition model was utilized to generate the freak waves, and the numerical model of the platform was developed using ANSYS AQWA. Subsequently, the dynamic response characteristics of offshore triceratops under the influence of freak waves were analyzed in the time domain. The results demonstrate the effects of freak waves on the surge, heave, and pitch responses of the deck and buoyant legs were substantial, leading to a significant increase in maximum responses and variations in mean shift and standard deviations. The innovative insights derived from this study can serve as a benchmark for validating the effective performance and design of offshore triceratops.