We present a weakly nonlinear theory on the natural modes' resonance of an array of oscillating wave surge converters (OWSCs) in a channel. We first derive the evolution equation of the Stuart-Landau type for the gate oscillations in uniform and modulated incident waves and then evaluate the nonlinear effects on the energy conversion performance of the array. We show that the gates are unstable to side-band perturbations so that a Benjamin-Feir instability similar to the case of Stokes' waves is possible. The non-autonomous dynamical system presents period doubling bifurcations and strange attractors. We also analyse the competition of two natural modes excited by one incident wave. For weak damping and power take-off coefficient, the dynamical effects on the generated power of the OWSCs are investigated. We show that the occurrence of subharmonic resonance significantly increases energy production.