We consider a system that consists of two sources, a half-duplex relay and a destination. The sources want to transmit their messages reliably to the destination with the help of the relay. We study and analyze the performance of a transmission scheme in which the relay implements a decode-and-forward strategy. We assume that all the channels are frequency selective, and in order to cope with that, we incorporate Orthogonal Frequency-Division Multiplexing (OFDM) transmission into the system. In contrast to previous works, both sources can transmit their messages using all subcarriers and the relay can decide to help none, only one, or both sources. For this scheme, we discuss the design criteria and evaluate the achievable sum-rate. Next, we study and solve the problem of resource allocation aiming at maximizing the achievable sum-rate. We propose an iterative coordinate-descent algorithm that finds a solution that is at least a local optimum. We show through numerical examples the effectiveness of the algorithms and illustrate the benefits of allowing both sources to transmit on all subcarriers.