Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The increasing amount of data and the number of nodes in large-scale environments require new techniques for information management. Examples of such environments are the decentralized infrastructures of Computational Grid and Computational Cloud applications. These large-scale applications need different kinds of aggregated information such as resource monitoring, resource discovery or economic information. The challenge of providing timely and accurate information in large scale environments arise from the distribution of the information. Reasons for delays in distributed information system are a long information transmission time due to the distribution, churn and failures. A problem of large applications such as peer-to-peer (P2P) systems is the increasing retrieval time of the information due to the decentralization of the data and the failure proneness. However, many applications need a timely information provision. Another problem is an increasing network consumption when the application scales to millions of users and data. Using approximation techniques allows reducing the retrieval time and the network consumption. However, the usage of approximation techniques decreases the accuracy of the results. Thus, the remaining problem is to offer a trade-off in order to solve the conflicting requirements of fast information retrieval, accurate results and low messaging cost. Our goal is to reach a self-adaptive decision mechanism to offer a trade-off among the retrieval time, the network consumption and the accuracy of the result. Self-adaption enables distributed software to modify its behavior based on changes in the operating environment. In large-scale information systems that use hierarchical data aggregation, we apply self-adaptation to control the approximation used for the information retrieval and reduces the network consumption and the retrieval time. The hypothesis of the thesis is that approximation techniquescan reduce the retrieval time and the network consumption while guaranteeing an accuracy of the results, while considering user’s defined priorities. First, this presented research addresses the problem of a trade-off among a timely information retrieval, accurate results and low messaging cost by proposing a summarization algorithm for resource discovery in P2P-content networks. After identifying how summarization can improve the discovery process, we propose an algorithm which uses a precision-recall metric to compare the accuracy and to offer a user-driven trade-off. Second, we propose an algorithm that applies a self-adaptive decision making on each node. The decision is about the pruning of the query and returning the result instead of continuing the query. The pruning reduces the retrieval time and the network consumption at the cost of a lower accuracy in contrast to continuing the query. The algorithm uses an analytic hierarchy process to assess the user’s priorities and to propose a trade-off in order to satisfy the accuracy requirements with a low message cost and a short delay. A quantitative analysis evaluates our presented algorithms with a simulator, which is fed with real data of a network topology and the nodes’ attributes. The usage of a simulator instead of the prototype allows the evaluation in a large scale of several thousands of nodes. The algorithm for content summarization is evaluated with half a million of resources and with different query types. The selfadaptive algorithm is evaluated with a simulator of several thousands of nodes that are created from real data. A qualitative analysis addresses the integration of the simulator’s components in existing market frameworks for Computational Grid and Cloud applications. The proposed content summarization algorithm reduces the information retrieval time from a logarithmic increase to a constant factor. Furthermore, the message size is reduced significantly by applying the summarization technique. For the user, a precision-recall metric allows defining the relation between the retrieval time and the accuracy. The self-adaptive algorithm reduces the number of messages needed from an exponential increase to a constant factor. At the same time, the retrieval time is reduced to a constant factor under an increasing number of nodes. Finally, the algorithm delivers the data with the required accuracy adjusting the depth of the query according to the network conditions. La gestió de la informació exigeix noves tècniques que tractin amb la creixent quantitat de dades i nodes en entorns a gran escala. Alguns exemples d’aquests entorns són les infraestructures descentralitzades de Computacional Grid i Cloud. Les aplicacions a gran escala necessiten diferents classes d’informació agregada com monitorització de recursos i informació econòmica. El desafiament de proporcionar una provisió ràpida i acurada d’informació en ambients de grans escala sorgeix de la distribució de la informació. Una raó és que el sistema d’informació ha de tractar amb l’adaptabilitat i fracassos d’aquests ambients. Un problema amb aplicacions molt grans com en sistemes peer-to-peer (P2P) és el creixent temps de recuperació de l’informació a causa de la descentralització de les dades i la facilitat al fracàs. No obstant això, moltes aplicacions necessiten una provisió d’informació puntual. A més, alguns usuaris i aplicacions accepten inexactituds dels resultats si la informació es reparteix a temps. A més i més, el consum de xarxa creixent fa que sorgeixi un altre problema per l’escalabilitat del sistema. La utilització de tècniques d’aproximació permet reduir el temps de recuperació i el consum de xarxa. No obstant això, l’ús de tècniques d’aproximació disminueix la precisió dels resultats. Així, el problema restant és oferir un compromís per resoldre els requisits en conflicte d’extracció de la informació ràpida, resultats acurats i cost d’enviament baix. El nostre objectiu és obtenir un mecanisme de decisió completament autoadaptatiu per tal d’oferir el compromís entre temps de recuperació, consum de xarxa i precisió del resultat. Autoadaptacío permet al programari distribuït modificar el seu comportament en funció dels canvis a l’entorn d’operació. En sistemes d’informació de gran escala que utilitzen agregació de dades jeràrquica, l’auto-adaptació permet controlar l’aproximació utilitzada per a l’extracció de la informació i redueixen el consum de xarxa i el temps de recuperació. La hipòtesi principal d’aquesta tesi és que els tècniques d’aproximació permeten reduir el temps de recuperació i el consum de xarxa mentre es garanteix una precisió adequada definida per l’usari. La recerca que es presenta, introdueix un algoritme de sumarització de continguts per a la descoberta de recursos a xarxes de contingut P2P. Després d’identificar com sumarització pot millorar el procés de descoberta, proposem una mètrica que s’utilitza per comparar la precisió i oferir un compromís definit per l’usuari. Després, introduïm un algoritme nou que aplica l’auto-adaptació a un ordre per satisfer els requisits de precisió amb un cost de missatge baix i un retard curt. Basat en les prioritats d’usuari, l’algoritme troba automàticament un compromís. L’anàlisi quantitativa avalua els algoritmes presentats amb un simulador per permetre l’evacuació d’uns quants milers de nodes. El simulador s’alimenta amb dades d’una topologia de xarxa i uns atributs dels nodes reals. L’algoritme de sumarització de contingut s’avalua amb mig milió de recursos i amb diferents tipus de sol·licituds. L’anàlisi qualitativa avalua la integració del components del simulador en estructures de mercat existents per a aplicacions de Computacional Grid i Cloud. Així, la funcionalitat implementada del simulador (com el procés d’agregació i la query language) és comprovada per la integració de prototips. L’algoritme de sumarització de contingut proposat redueix el temps d’extracció de l’informació d’un augment logarítmic a un factor constant. A més, també permet que la mida del missatge es redueix significativament. Per a l’usuari, una precision-recall mètric permet definir la relació entre el nivell de precisió i el temps d’extracció de la informació. Alhora, el temps de recuperació es redueix a un factor constant sota un nombre creixent de nodes. Finalment, l’algoritme reparteix les dades amb la precisió exigida i ajusta la profunditat de la sol·licitud segons les condicions de xarxa. Els algoritmes introduïts són prometedors per ser utilitzats per l’agregació d’informació en nous sistemes de gestió de la informació de gran escala en el futur.
The increasing amount of data and the number of nodes in large-scale environments require new techniques for information management. Examples of such environments are the decentralized infrastructures of Computational Grid and Computational Cloud applications. These large-scale applications need different kinds of aggregated information such as resource monitoring, resource discovery or economic information. The challenge of providing timely and accurate information in large scale environments arise from the distribution of the information. Reasons for delays in distributed information system are a long information transmission time due to the distribution, churn and failures. A problem of large applications such as peer-to-peer (P2P) systems is the increasing retrieval time of the information due to the decentralization of the data and the failure proneness. However, many applications need a timely information provision. Another problem is an increasing network consumption when the application scales to millions of users and data. Using approximation techniques allows reducing the retrieval time and the network consumption. However, the usage of approximation techniques decreases the accuracy of the results. Thus, the remaining problem is to offer a trade-off in order to solve the conflicting requirements of fast information retrieval, accurate results and low messaging cost. Our goal is to reach a self-adaptive decision mechanism to offer a trade-off among the retrieval time, the network consumption and the accuracy of the result. Self-adaption enables distributed software to modify its behavior based on changes in the operating environment. In large-scale information systems that use hierarchical data aggregation, we apply self-adaptation to control the approximation used for the information retrieval and reduces the network consumption and the retrieval time. The hypothesis of the thesis is that approximation techniquescan reduce the retrieval time and the network consumption while guaranteeing an accuracy of the results, while considering user’s defined priorities. First, this presented research addresses the problem of a trade-off among a timely information retrieval, accurate results and low messaging cost by proposing a summarization algorithm for resource discovery in P2P-content networks. After identifying how summarization can improve the discovery process, we propose an algorithm which uses a precision-recall metric to compare the accuracy and to offer a user-driven trade-off. Second, we propose an algorithm that applies a self-adaptive decision making on each node. The decision is about the pruning of the query and returning the result instead of continuing the query. The pruning reduces the retrieval time and the network consumption at the cost of a lower accuracy in contrast to continuing the query. The algorithm uses an analytic hierarchy process to assess the user’s priorities and to propose a trade-off in order to satisfy the accuracy requirements with a low message cost and a short delay. A quantitative analysis evaluates our presented algorithms with a simulator, which is fed with real data of a network topology and the nodes’ attributes. The usage of a simulator instead of the prototype allows the evaluation in a large scale of several thousands of nodes. The algorithm for content summarization is evaluated with half a million of resources and with different query types. The selfadaptive algorithm is evaluated with a simulator of several thousands of nodes that are created from real data. A qualitative analysis addresses the integration of the simulator’s components in existing market frameworks for Computational Grid and Cloud applications. The proposed content summarization algorithm reduces the information retrieval time from a logarithmic increase to a constant factor. Furthermore, the message size is reduced significantly by applying the summarization technique. For the user, a precision-recall metric allows defining the relation between the retrieval time and the accuracy. The self-adaptive algorithm reduces the number of messages needed from an exponential increase to a constant factor. At the same time, the retrieval time is reduced to a constant factor under an increasing number of nodes. Finally, the algorithm delivers the data with the required accuracy adjusting the depth of the query according to the network conditions. La gestió de la informació exigeix noves tècniques que tractin amb la creixent quantitat de dades i nodes en entorns a gran escala. Alguns exemples d’aquests entorns són les infraestructures descentralitzades de Computacional Grid i Cloud. Les aplicacions a gran escala necessiten diferents classes d’informació agregada com monitorització de recursos i informació econòmica. El desafiament de proporcionar una provisió ràpida i acurada d’informació en ambients de grans escala sorgeix de la distribució de la informació. Una raó és que el sistema d’informació ha de tractar amb l’adaptabilitat i fracassos d’aquests ambients. Un problema amb aplicacions molt grans com en sistemes peer-to-peer (P2P) és el creixent temps de recuperació de l’informació a causa de la descentralització de les dades i la facilitat al fracàs. No obstant això, moltes aplicacions necessiten una provisió d’informació puntual. A més, alguns usuaris i aplicacions accepten inexactituds dels resultats si la informació es reparteix a temps. A més i més, el consum de xarxa creixent fa que sorgeixi un altre problema per l’escalabilitat del sistema. La utilització de tècniques d’aproximació permet reduir el temps de recuperació i el consum de xarxa. No obstant això, l’ús de tècniques d’aproximació disminueix la precisió dels resultats. Així, el problema restant és oferir un compromís per resoldre els requisits en conflicte d’extracció de la informació ràpida, resultats acurats i cost d’enviament baix. El nostre objectiu és obtenir un mecanisme de decisió completament autoadaptatiu per tal d’oferir el compromís entre temps de recuperació, consum de xarxa i precisió del resultat. Autoadaptacío permet al programari distribuït modificar el seu comportament en funció dels canvis a l’entorn d’operació. En sistemes d’informació de gran escala que utilitzen agregació de dades jeràrquica, l’auto-adaptació permet controlar l’aproximació utilitzada per a l’extracció de la informació i redueixen el consum de xarxa i el temps de recuperació. La hipòtesi principal d’aquesta tesi és que els tècniques d’aproximació permeten reduir el temps de recuperació i el consum de xarxa mentre es garanteix una precisió adequada definida per l’usari. La recerca que es presenta, introdueix un algoritme de sumarització de continguts per a la descoberta de recursos a xarxes de contingut P2P. Després d’identificar com sumarització pot millorar el procés de descoberta, proposem una mètrica que s’utilitza per comparar la precisió i oferir un compromís definit per l’usuari. Després, introduïm un algoritme nou que aplica l’auto-adaptació a un ordre per satisfer els requisits de precisió amb un cost de missatge baix i un retard curt. Basat en les prioritats d’usuari, l’algoritme troba automàticament un compromís. L’anàlisi quantitativa avalua els algoritmes presentats amb un simulador per permetre l’evacuació d’uns quants milers de nodes. El simulador s’alimenta amb dades d’una topologia de xarxa i uns atributs dels nodes reals. L’algoritme de sumarització de contingut s’avalua amb mig milió de recursos i amb diferents tipus de sol·licituds. L’anàlisi qualitativa avalua la integració del components del simulador en estructures de mercat existents per a aplicacions de Computacional Grid i Cloud. Així, la funcionalitat implementada del simulador (com el procés d’agregació i la query language) és comprovada per la integració de prototips. L’algoritme de sumarització de contingut proposat redueix el temps d’extracció de l’informació d’un augment logarítmic a un factor constant. A més, també permet que la mida del missatge es redueix significativament. Per a l’usuari, una precision-recall mètric permet definir la relació entre el nivell de precisió i el temps d’extracció de la informació. Alhora, el temps de recuperació es redueix a un factor constant sota un nombre creixent de nodes. Finalment, l’algoritme reparteix les dades amb la precisió exigida i ajusta la profunditat de la sol·licitud segons les condicions de xarxa. Els algoritmes introduïts són prometedors per ser utilitzats per l’agregació d’informació en nous sistemes de gestió de la informació de gran escala en el futur.
Replicated services that allow to scale dynamically can adapt to requests load. Choosing the right number of replicas is fundamental to avoid performance worsening when input spikes occur and to save resources when the load is low. Current mechanisms for automatic scaling are mostly based on fixed thresholds on CPU and memory usage, which are not sufficiently accurate and often entail late countermeasures. We propose Make Your Service Elastic (MYSE), an architecture for automatic scaling of generic replicated services based on queuing models for accurate response time estimation. Requests and service times patterns are analyzed to learn and predict over time their distribution so as to allow for early scaling. A novel heuristic is proposed to avoid the flipping phenomenon. We carried out simulations that show promising results for what concerns the effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.