Members of the Cucurbitaceae family display a range of sexual phenotypes including various combinations of male, female, or bisexual flowers. Ethylene appears to be a key hormone regulating the sex determination process. Application of ethylene, or inhibition of ethylene action, increases or decreases the number of pistil-bearing buds, respectively. Elevated levels of ethylene production and expression of genes for ethylene biosynthesis, have been correlated with pistillate flower production. In this study, we sought to determine the effect of modified endogenous ethylene production on sex expression by constitutively expressing ACS (1-aminocyclopropane-1-carboxylate synthase), the first committed enzyme for ethylene biosynthesis, in transgenic melons (Cucumis melo L.). Most melon genotypes are andromonoecious, where an initial phase of male flowers is followed by a mixture of bisexual and male flowers. ACS melon plants showed increased ethylene production by leaves and flower buds, and increased femaleness as measured by earlier and increased number of bisexual buds. ACS melons also had earlier and increased number of bisexual buds that matured to anthesis, suggesting that ethylene is important not only for sex determination, but also for development of the bisexual bud to maturity. Field studies showed that ACS melons had earlier mature bisexual flowers, earlier fruit set, and increased number of fruit set on closely spaced nodes on the main stem. These results provide a direct demonstration of the importance of endogenous ethylene production for female reproductive processes in melon.