In this paper, we study a buffer-aided TDMA uplink network, where multiple status-update devices and throughput-demand devices are supposed to upload their data to one information access point (AP), and all devices are assumed to be provisioned with a data buffer to temporarily store the randomly generated data from either the installed sensor or upper-layer applications. To fulfill the communication requirements using two types of devices, the average Age of Information (AoI) is utilized to characterize the data freshness of the status-update devices, while the average sum rate is employed to capture the average transmission performance of the throughput-demand devices. On this basis, a joint-optimization problem was formulated to minimize the average AoI for status-update devices and to maximize the average sum rate for the throughput-demand devices. Lyapunov optimization framework was used to solve the problem of obtaining an AoI-aware adaptive TDMA uplink scheme. Numerical results are presented to show that an AoI-aware adaptive TDMA uplink scheme can effectively fulfill the heterogeneous service requirements using status-update devices and throughput-demand devices.