Turkeys (Meleagris gallopavo) provide a globally important source of protein and constitute the second most important source of poultry meat in the world. Bacterial diseases are common in commercial poultry production causing significant production losses for farmers. Due to the increasingly recognized problems associated with large-scale/indiscriminant antibiotic use in agricultural settings, poultry producers need alternative methods to control common bacterial pathogens. In this study we compared the cecal microbiota of wild and domestic turkeys, hypothesizing that environmental pressures faced by wild birds may select for a disease-resistant microbial community. Sequence analysis of 16S rRNA genes amplified from cecal samples indicate that free-roaming wild turkeys carry a rich and variable microbiota compared to domestic turkeys raised on large-scale poultry farms. Wild turkeys also had very low levels of Staphylococcus, Salmonella and E. coli when compared to domestic turkeys. E. coli strains isolated from wild or domestic turkey cecal samples also belong to distinct phylogenetic backgrounds and differ in their propensity to carry virulence genes. E. coli strains isolated from factory-raised turkeys were far more likely to carry genes for capsule (kpsII, kpsIII) or siderophore (iroN, fyuA) synthesis than those isolated from wild turkeys. These results suggest that the microbiota of wild turkeys may provide colonization resistance against common poultry pathogens.