Wastewater handling has been associated with an increased risk of developing adverse health effects, including respiratory and gastrointestinal illnesses. However, there is a paucity of information in the literature, and occupational health risks are not well quantified. Grab influent samples were analysed using Illumina Miseq 16S amplicon sequencing to assess potential worker exposure to bacterial pathogens occurring in five municipal wastewater treatment plants (WWTPs). The most predominant phyla were Bacteroidota, Campilobacterota, Proteobacteria, Firmicutes, and Desulfobacterota, accounting for 85.4% of the total bacterial community. Taxonomic analysis showed a relatively low diversity of bacterial composition of the predominant genera across all WWTPs, indicating a high degree of bacterial community stability in the influent source. Pathogenic bacterial genera of human health concern included Mycobacterium, Coxiella, Escherichia/Shigella, Arcobacter, Acinetobacter, Streptococcus, Treponema, and Aeromonas. Furthermore, WHO-listed inherently resistant opportunistic bacterial genera were identified. These results suggest that WWTP workers may be occupationally exposed to several bacterial genera classified as hazardous biological agents for humans. Therefore, there is a need for comprehensive risk assessments to ascertain the actual risks and health outcomes among WWTP workers and inform effective intervention strategies to reduce worker exposure.