An assay to identify tissue culture cells infected with bovine respiratory syncytial virus (BRSV) that utilizes reverse transcription (RT), the polymerase chain reaction (PCR), and a synthetic oligonucleotide hybridization probe has been developed. The RT-PCR assay uses a BRSV-specific negative-sense oligonucleotide primer to synthesize cDNA from a BRSV fusion protein mRNA template and another BRSV-specific oligonucleotide primer (positive sense) upstream from the negative-sense primer for PCR amplification. In the presence of mRNA templates of BRSV isolates originating from locations throughout the United States, the BRSV RT-PCR assay resulted in amplified products (381 bp) that were specific to BRSV, as demonstrated in hybridizations with a positive-sense oligonucleotide probe complementary to internal sequences and in sequence comparisons with the F protein of BRSV 391-2. In analysis of the BRSV RT-PCR assay with prototype strains of human RSV subgroups A and B, amplification of a similar 381-bp RT-PCR product was not evident, and no RT-PCR product hybridized with the internal probe. We conclude that the specific ability to amplify DNA sequences of BRSV F protein mRNA by RT-PCR and then to demonstrate the presence of the amplified product with a BRSV-specific oligonucleotide probe will greatly add to the speed, sensitivity, and specificity of BRSV diagnostics. Bovine respiratory syncytial virus (BRSV), a pneumovirus in the family Paramyxoviridae, is an important cause of acute respiratory disease in postweaning calves and feedlot cattle in the United States (1-3, 6). In Europe, BRSV infection is considered one of the most significant causes of bovine respiratory disease (11, 23). Although most infections are inapparent (2, 6, 12), the high prevalence of seropositive * Corresponding author. t Contribution no. 93-146-J from the Kansas Agricultural Experiment Station.