Since hysteretic dampers have nonlinear restoring-force characteristics with sensitive plastic flow and input earthquake ground motions propagating random media are extremely random in time and frequency domains, the seismic response of a building structure with hysteretic dampers deviates greatly depending on the installed quantity and location of dampers. This characteristic could become a barrier and difficulty to the reliable formulation of optimal placement problems of such dampers. In order to overcome such difficulty, a new optimization method including a variable adaptive step length is proposed. The proposed method to solve the optimum design problem is a successive procedure which consists of two steps. The first step is a sensitivity analysis by using nonlinear time-history response analyses, and the second step is a modification of the set of damper quantities based upon the sensitivity analysis. Numerical examples are presented to demonstrate the effectiveness and validity of the proposed design method.