Abstract:This article reviews the current state of the art in the design of traditional uni-directional fibre laminate construction; beyond the ubiquitous balanced and symmetric design. A ply termination algorithm is then employed to develop permissible tapered designs, with single-ply terminations and ply contiguity constraints, which are free from undesirable changes in mechanical coupling characteristics.More importantly however, is the fact that all tapered designs have immunity to thermal warping distortion; which include all combinations of anti-symmetric (or cross-symmetric), non-symmetric and symmetric angle-and cross-ply sub-sequence symmetries. Tapered designs are presented for laminates with fully uncoupled properties, and those possessing extension-shearing and/or bending-twisting coupling. Such designs represent typical fuselage skin thicknesses, i.e., with between (n =) 12 and 16 plies, but due consideration is also given to new fuselage design concepts with grid-stiffeners and/or geodesic stiffener arrangements, for which thinner designs (n e 8) are of interest.