The nonbolometric response of La 1−x Ca x MnO 3 film to 10 GHz and 35 GHz frequency electromagnetic radiation is investigated in the case when, in addition to the strong electric field of the wave, the film is subjected to a stationary electric bias field. Dependences of responses on the radiation power P at temperature T = 80 K are presented. In the low power region, a linear dependence of the response on P is observed at both frequencies whereas for high powers the dependence behaves as ∼ P 1/2 . The obtained results are explained taking into account that the nonbolometric response originates from the intergranular junctions that operate in the reverse current regime. There two effects take place: (i) at low powers the detection resistance decreases with increasing power P, and (ii) at higher powers in addition to that the film resistance decreases as P 1/2 due to the avalanche of charge carriers in the electric field of the electromagnetic wave.