Grafting with vigorous rootstocks could offer tomato growers in Texas sustainable and efficient option to achieve reliable yield across a range of production systems and locations. Genotypes (G) of grafted and non-grafted tomato were grown in different environments (E) in the 2017 and 2018 spring seasons. The objectives of the study were to (i) evaluate the effects of production system and grafting on tomato yield traits, (ii) determine the size of genotypic and genotype by environment interaction (G × e) variance components, and (iii) evaluate the relative stability of tested genotypes for yield and its components across production environments. In 2017, genotypes were non-grafted 'TAMU Hot Ty' (TAM) and 'Tycoon' (TY) and each grafted on commercial tomato rootstocks 'Estamino' (TAM/ ES, TY/ES) and 'Multifort' (TAM/MU, TY/MU) while in 2018, TAM and 'HM1823' (HM) were grafted on 'Estamino' (TAM/ES, HM/ES) and 'Multifort' (TAM/MU, HM/MU). Testing environments were high tunnel (HT) and open-field (OF) in Uvalde in 2017 while in 2018, these were HT and OF in Lubbock (LU-HT, LU-OF), Overton (OV-HT, OV-OF), Uvalde (UV-HT, UV-OF), and Weslaco (WE-HT, WE-OF). Total and marketable yields, fruit number per plant, and average fruit weight were significantly affected by E, G, and G × E interaction. Environmental component contributed 71-86% to the total variation for all these traits, while genotype explained 1.5-10.8%, and the contribution of G × E ranged between 4.3 to 6.7%. Estimation of the univariate statistic parameters and genotype plus genotype × environment (GGE) biplot analysis indicated that HM/MU and HM/ES were the most stable graft combination with the highest total and marketable yields, while TAM/ES was very unstable for yields across test environments. TAM/MU was stable but with yield lower than the grand mean. These results suggest that high tomato yields could be consistently achieved with grafted combination (HM/MU and HM/ES) especially under high tunnel production system across the regions of texas. Genetics, environmental factors, and cultural management practices typically determine the extent of quantitative traits of economic importance such as genotype or cultivar yield. As such, the proportion of the variation in this phenotypic trait due to the main effect of genotype (G), the environment (E) and their interactions (G × E) is routinely assessed during the process of selecting top-performing lines 1. In this regard, multilocation trials are routinely conducted to assess the pattern of genotypic response over a number of locations and years (test environments). Typically, a significant G × E exists whenever the genotype performance greatly differs with environments 2,3. When a significant G × E is identified, subsequent stability analysis is often carried out to identify stable genotypes which exhibit consistently higher yield over several environments 4. The presence of significant G × E has been found in growth and yield traits of several field 5-8 and vegetable crops 3,9-11. In tomato (Solanum lyc...