Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Seawater intrusion significantly affects the microbial communities within coastal aquifers. Investigating the spatial distribution of groundwater microbial communities in coastal regions is crucial for understanding seawater intrusion. The primary objective of this study is to develop a novel microbial index-based method for detecting seawater intrusion. Groundwater microbial samples were collected and sent to the laboratory in the west coastal area of Longkou City, Shandong Province. By characterizing the microbial community within the whole interval of seawater intrusion into fresh groundwater and discussing the effects of salt-freshwater displacement intensities on groundwater microbial communities, including diversity, structure, and function, using indoor domestication experiments, we reveal the response of microorganisms to the seawater intrusion process under in situ environmental conditions. The results show that the microbial community diversity is highest in environments with a seawater mixing proportion (P(sm)) of 2.5% and lowest in those with a P(sm) of 75%. When considering species abundance and evolutionary processes, the microbial community structure is similar at higher P(sm) levels, while it is similar at lower P(sm) levels based on the presence or absence of species. Tenericutes, Flavobacteriia, Rhodobacterales, Flavobacteriales, Rhodobacteraceae, Flavobacteriaceae, Cohaesibacteraceae, and Cohaesibacter are significantly positively correlated with the P(sm). Strong salt-freshwater displacement enhanced the richness and evenness of the microbial community, whereas weak displacement showed the opposite trend. Strong displacement affects the functional profiles of the microbial community. This study effectively addressed the challenge of obtaining samples in coastal areas and also incorporated salt-freshwater displacement intensities, which can more comprehensively describe the microbial community characteristics within the groundwater of coastal aquifers.
Seawater intrusion significantly affects the microbial communities within coastal aquifers. Investigating the spatial distribution of groundwater microbial communities in coastal regions is crucial for understanding seawater intrusion. The primary objective of this study is to develop a novel microbial index-based method for detecting seawater intrusion. Groundwater microbial samples were collected and sent to the laboratory in the west coastal area of Longkou City, Shandong Province. By characterizing the microbial community within the whole interval of seawater intrusion into fresh groundwater and discussing the effects of salt-freshwater displacement intensities on groundwater microbial communities, including diversity, structure, and function, using indoor domestication experiments, we reveal the response of microorganisms to the seawater intrusion process under in situ environmental conditions. The results show that the microbial community diversity is highest in environments with a seawater mixing proportion (P(sm)) of 2.5% and lowest in those with a P(sm) of 75%. When considering species abundance and evolutionary processes, the microbial community structure is similar at higher P(sm) levels, while it is similar at lower P(sm) levels based on the presence or absence of species. Tenericutes, Flavobacteriia, Rhodobacterales, Flavobacteriales, Rhodobacteraceae, Flavobacteriaceae, Cohaesibacteraceae, and Cohaesibacter are significantly positively correlated with the P(sm). Strong salt-freshwater displacement enhanced the richness and evenness of the microbial community, whereas weak displacement showed the opposite trend. Strong displacement affects the functional profiles of the microbial community. This study effectively addressed the challenge of obtaining samples in coastal areas and also incorporated salt-freshwater displacement intensities, which can more comprehensively describe the microbial community characteristics within the groundwater of coastal aquifers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.