Soil quality indicates the soil’s ability to provide ecosystem services. Reducing the tillage intensity has been suggested as an alternative to conventional tillage for sustaining soil quality. This study aimed to evaluate the effect of soil tillage systems on individual soil quality indicators in comparison to those on grassland with Stagnic Luvisol soil in Estonia. Four soil management systems were compared: no-tillage (NT), minimum tillage (MT), conventional tillage (CT) and grassland (G) as a reference. Soil quality indicators included physical (bulk density, water-stable aggregates, porosity, air-filled pores, moisture content, water-holding capacity, penetration resistance and water permeability), chemical (total N, total soil organic C, permanganate oxidisable C, pH, P, K, Ca and Mg) and biological (earthworm abundance) parameters. CT soils had a significantly lower aggregate stability compared to MT and G soils. The higher penetration resistance of CT under an arable layer suggested the presence of a plough pan. NT improved the soil’s physical quality at 5–10 cm, which was indicated by higher moisture content, water-holding capacity and porosity and a lower bulk density, whereas penetration resistance exceeded 2 MPa in the lower part of the topsoil. NT also had significantly lower total soil organic C and total N compared to MT and G. The absence of tillage in the NT and G systems may have improved the soil’s resistance to moisture loss under dry conditions, which, in turn, improved the soil habitability for earthworms a despite higher density. In general, NT or MT stabilised or increased the soil quality compared to CT.