The aim of this study was to appreciate the consequences of spontaneous human activity for freshwater mollusks in the generally ecologically sustainable area in Western Ukraine. For this, bivalve mollusk, Anodonta cygnea, at three sites, with mixed agricultural and municipal activities (A), close to a municipal water inlet (F) and the cooling pond of a nuclear power plant (N), were studied in spring, summer, and autumn. The set of parameters included the characteristics of oxidative stress (activity of catalase (CAT), levels of protein carbonyls (PC)), levels of reduced and oxidized glutathione (GSH, GSSG, respectively), activities of lactate dehydrogenase (LD), cholinesterase (ChE), ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST) in the digestive gland, and concentrations of vitellogenin-like proteins (Vtg-LP) in gonads and also morphological indices. Although the discriminant functional analysis confirmed the general seasonal regularities for studied groups, it allowed to discriminate between sites (P < 0.05). At site A, oxidative stress; high levels of LD, EROD, and GST; and low levels of ChE and condition factor were reflected. This demonstrated the sensitivity of mussels to constant effect of mixed pollution. At site N, oxidative injury was shown that might be explained by the constantly high temperature. At site F, abrupt elevations of Vtg-LP and EROD levels in autumn were probably related to an emergency situation on the nearby dump. So, both chronic and temporal environmental effects were reflected by a set of markers in mollusk. The classification and regression tree (CART) algorithm selected GSH and PC in the digestive gland and Vtg-LP as partitioning criteria for the characterization of mussel health status. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.