The purpose of this study was to evaluate the biochemical responses to water stress tolerance of two pomegranate cultivars, 'Rabbab' and 'Shishehgap'. After the establishment of rooted stem cuttings of both cultivars under greenhouse conditions, they were treated with four levels of deficit irrigations (100%, 75%, 50% and 25% of field capacity) in a completely randomized design with four replications. The results showed a significant difference between the two cultivars regarding antioxidant enzymes activities. In both cultivars, the water stress increased the activity of superoxide dismutase, catalase and ascorbate peroxidase. However, at high water deficit (25% field capacity, FC), 'Rabbab' showed significantly higher enzyme activity than 'Shishehgap'. In each level of irrigation, there were not considerable differences in peroxidase activity between the two cultivars. An increment of 162% and 65.5% in soluble sugar was gained at 50% FC in 'Rabbab' and 'Shishehgap', respectively. 'Rabbab' showed better growth performance in each level of irrigation than 'Shishehgap'. Therefore, it can be concluded that 'Rabbab', with lesser decline in leaf relative water content (RWC), a strong antioxidant system and accumulation of more soluble carbohydrates, can resist higher water stress than 'Shishehgap'.Additional key words: field capacity; enzyme activity; Punica granatum L.; water stress. Abbreviation used: APX (ascorbate peroxidase); CAT (catalase); DW (dry weight); FC (field capacity); FW (fresh weight); NBT (nitro blue tetrazolium); POD (peroxidase); ROS (reactive oxygen species); RWC (leaf relative water content); SOD (superoxide dismutase).