The assessment of habitat quality plays an important role in the effective conservation of wetland biodiversity. The Yellow River Delta Wetland is located in the intertwining zone of sea, terrestrial, and river ecosystems, increasing human activities and climate change posed a great threat to wetland biodiversity. This study first analyzed the spatial and temporal evolution characteristics of habitat quality in the Yellow River Delta Wetland under the evolution of the shoreline after runoff-sediment variability (1986–2020) using the InVEST-habitat quality model and then identified the dominant influence factors on habitat quality based on Geographical Detector. Finally, elasticity index was introduced to analyze the impacts of different reclamation activities on habitat quality. Results showed that the habitat quality decreased from 0.4798 in 1986 to 0.4078 in 2020, with high values of habitat quality concentrated in mudflat wetlands and low values of habitat quality concentrated in construction land and salt pans. The results of the Geographical Detector analysis showed that the influence of human activities, especially reclamation activities, had stronger effects on habitat quality than climatic factors. The elasticity index analysis showed that the elasticity of all three types of reclamation activities, namely, culture ponds, construction land, and salt pans, were negative from 1986 to 2005, 2005 to 2020, and 1986 to 2020. The reclamation activities had a negative impact on habitat quality. The habitat quality of the Yellow River Delta Wetland was most sensitive to the change in reclamation intensity of construction land from 1986 to 2020, and the sensitivity of the change of habitat quality to the change of reclamation intensity of culture ponds and salt pans was strengthening. This study explicitly revealed the effect of climate change and human activities on the habitat quality of the Yellow River Delta Wetland and proposed to analyze the response intensity of habitat quality to different reclamation activities by using the elasticity index, thus providing a scientific basis for mitigating the tradeoff between biodiversity conservation and rapid social development in the Yellow River Delta Wetland in the future.