ABSTRACTThe success ofMycobacterium tuberculosisdepends on its ability to withstand and survive the hazardous environment inside the macrophages that are created by reactive oxygen intermediates, reactive nitrogen intermediates, severe hypoxia, low pH, and high CO2levels. Therefore, an effective detoxification system is required for the pathogen to persistin vivo. The genome ofM. tuberculosiscontains a new family of hemoproteins named truncated hemoglobin O (trHbO) and truncated hemoglobin N (trHbN), encoded by theglbOandglbNgenes, respectively, important in the survival ofM. tuberculosisin macrophages. Mycobacterial heat shock proteins are known to undergo rapid upregulation under stress conditions. The expression profiles of the promoters of these genes were studied by constructing transcriptional fusions with green fluorescent protein and monitoring the promoter activity in both free-living and intracellular milieus at different time points. WhereasglbNshowed an early response to the oxidative and nitrosative stresses tested,glbOgave a lasting response to lower concentrations of both stresses. At all time points and under all stress conditions tested,groEL2showed higher expression than both trHb promoters and expression of both promoters showed an increase while inside the macrophages. Real-time PCR analysis of trHb andgroEL2mRNAs showed an initial upregulation at 24 h postinfection. The presence of theglbOprotein imparted an increased survival toM. smegmatisin THP-1 differentiated macrophages compared to that imparted by theglbNandhsp65proteins. The comparative upregulation shown by both trHb promoters while grown inside macrophages indicates the importance of these promoters for the survival ofM. tuberculosisin the hostile environment of the host.