Subtropical forest phenology differentiation is affected by temperature, precipitation, and topography. Understanding the primary contributing elements and their interactions with forest phenology can help people better comprehend the subtropical forest growth process and its response to climate. Meanwhile, the temporal and spatial variations of phenological rhythms are important indicators of climatic impacts on forests. Therefore, this study aimed to analyze both a total area and different forest growth environments within the whole (i.e., coastal site areas (II, IV) and inland site areas (I, III)) as to spatiotemporal patterns associated with subtropical forests in Fujian Province, which is located at the boundary between the middle and south subtropical zones. Considering the asymmetric effects of climate and forest growth, this study chose pre-seasonal and cumulative temperature and precipitation factors and utilized the GeoDetector model to analyze the dominant drivers and interactions within phenology differentiation in Fujian Province. The results show the following: (1) All of the phenological parameters were advanced or shortened over the 19-year observation period; those of shrubland and deciduous broadleaf forests fluctuated greatly, and their stability was poor. (2) The phenological parameters were more distinct at the borders of the site areas. Additionally, the dates associated with the end of the growth season (EOS) and the date-position of peak value (POP) in coastal areas (i.e., II and IV) were later than those in inland areas (i.e., I and III). Among the parameters, the length of the growth season (LOS) was most sensitive to altitude. (3) Precipitation was the main driving factor affecting the spatial heterogeneity of the start of the growth season (SOS) and the EOS. The relatively strong effects of preseason and current-month temperatures on the SOS may be influenced by the temperature threshold required to break bud dormancy, and the relationship between the SOS and temperature was related to the lag time and the length of accumulation. The EOS was susceptible to the hydrothermal conditions of the preseason accumulation, and the variation trend was negatively correlated with temperature and precipitation. Spatial attribution was used to analyze the attribution of phenology differentiation from the perspectives of different regions, thus revealing the relationships between forest phenology and meteorological time-lag effects, the result which can contribute to targeted guidance and support for scientific forest management.