Quantifying cognitive potential relies on psychometric measures that do not directly reflect cortical activity. While the relationship between cognitive ability and resting state EEG signal dynamics has been extensively studied in children with below-average cognitive performances, there remains a paucity of research focusing on individuals with normal to above-average cognitive functioning. This study aimed to elucidate the resting EEG dynamics in children aged four to 12 years across normal to above-average cognitive potential. Our findings indicate that signal complexity, as measured by Multiscale Entropy (MSE), was not significantly predictive of the level of cognitive functioning. However, utilizing Directed Phase Lag Index (DPLI) as an effective connectivity measure, we observed consistent patterns of information flow between anterior and posterior regions. Fronto-parietal as well as local connectivity patterns were seen across most of the cognitive functions. Moreover, specific connectivity patterns were obtained for each intellectual quotient index (namely verbal comprehension, visuospatial, fluid reasoning, and processing speed indexes as well as full-scale intellectual quotient). These results underscore the presence of long-range connections and support fronto-parietal theories of cognitive abilities within the resting state brain dynamics of children.