ABSTRACT. Some ecological restoration projects include elements of trial and error where new measures are repeatedly tried, evaluated, and modified until satisfactory results are achieved. Thereafter, the resulting methods may be applied on larger scales. A difficult step is judging whether developed "best-practice" methods have become reasonably ecologically functional or whether further experimentation "demonstration" methods can lead to yet better results. Here, we use a stream restoration project as a case study for evaluating methods and abiotic effects and outlining stakeholder support for demonstration restoration measures, rather than only using best-practice methods. Our work was located in the Vindel River system, a free-flowing river that is part of the Natura 2000 network. The river was exploited for timber floating from 1850-1976, and rapids in the main channel and tributaries below timberline were channelized to increase timber transport capacity. Several side channels in multi-channeled rapids were blocked and the flow was concentrated to a single channel from which boulders and large wood were removed. Hence, previously heterogeneous environments were replaced by more homogeneous systems with limited habitat for riverine species. The restoration project strives to alleviate the effects of fragmentation and channelization in affected rapids by returning coarse sediment from channel margins to the main channel. However, only smaller, angular sediment is available given blasting of large boulders, and large (old-growth) wood is largely absent; therefore, original levels of large boulders and large wood in channels cannot be achieved with standard restoration practices. In 10 demonstration sites, we compensated for this by adding large boulders and large wood (i.e., entire trees) from adjacent upland areas to previously best-practice restored reaches and compared their hydraulic characteristics with 10 other best-practice sites. The demonstration sites exhibited significantly reduced and more variable current velocities, and wider channels, but with less variation than pre-restoration. The ecological response to this restoration has not yet been studied, but potential outcomes are discussed.